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Microelectronic devices that contain biological components are
typically used to interrogate biology1,2 rather than control
biological function. Patterned assemblies of proteins and cells
have, however, been used for in vitro metabolic engineering3–7,
where coordinated biochemical pathways allow cell metabolism
to be characterized and potentially controlled8 on a chip. Such
devices form part of technologies that attempt to recreate
animal and human physiological functions on a chip9 and could
be used to revolutionize drug development10. These ambitious
goals will, however, require new biofabrication methodologies
that help connect microelectronics and biological systems11,12

and yield new approaches to device assembly and communi-
cation. Here, we report the electrically mediated assembly,
interrogation and control of a multi-domain fusion protein that
produces a bacterial signalling molecule. The biological system
can be electrically tuned using a natural redox molecule, and
its biochemical response is shown to provide the signalling
cues to drive bacterial population behaviour. We show that the
biochemical output of the system correlates with the electrical
input charge, which suggests that electrical inputs could be
used to control complex on-chip biological processes.

The presented system uses electrical signals to assemble and tune
an enzymatic pathway on a gold electrode chip, thereby creating a
programmable hybrid device that contains both biological and elec-
tronic components. The electrical signals can control both the
amount of assembled enzymes and their activity, the latter by
oxidation through a diffusible redox mediator. The biohybrid
device assembly process is electrically guided by electrodeposition
(Fig. 1)13,14. The multidomain fusion protein HLPT7 (Fig. 1b) was
used as a model enzyme, and was covalently grafted onto a chitosan
scaffold electrodeposited on a gold electrode chip (Fig. 1c). The chit-
osan film serves as a template for protein incorporation onto the
device surface. HLPT consists of an N-terminal pentahistidine tag
and the bacterial enzymes LuxS and Pfs, which are the two terminal
synthases of bacterial autoinducer-2 (AI-2). This quorum-sensing
(QS) signal molecule is normally secreted from cells to mediate a
transition from individual cells to collective behaviour within
bacterial populations, and promotes the establishment of bio-
films14–16, among other phenotypes. Here, we look to use electric
signals to mediate bacterial responses. HLPT also contains a
C-terminal pentatyrosine tag that allows covalent attachment to
chitosan’s primary amines via the enzyme tyrosinase17. These bio-
fabrication assembly methods (Supplementary Section 3) have
proven reliable in retaining enzymatic activity on chip and in
providing an even protein coating (Fig. 3a)4,18.

After assembly, the desired biohybrid device will modulate the
activity of HLPT for the guided synthesis of AI-2 and a by-
product, homocysteine (Hcy) (1:1 stoichiometric ratio). On-chip
enzyme activity was assayed using three modalities: optical, electro-
chemical and biological (Supplementary Section 4). The exper-
iments were carried out at physiologically relevant concentrations;
importantly, our methods are linear in these ranges, including a
near real-time electrochemical method for Hcy. Applications that
require real-time assessment and no sampling (direct in situ
measurement) may thus be feasible (Supplementary Fig. 3).

HLPT oxidation can be mediated in several ways. Our initial
studies made use of chemical oxidation via the powerful protein
oxidant K2IrCl6 (iridium, denoted Ir(IV))19. The results
(Supplementary Figs 4 and 5; see discussion in Supplementary
Section 6) indicate that oxidized iridium, and not its reduced form
(controls), decrease HLPT activity in a predictable concentration-
and time-dependent manner.

To test for electric actuation we selected the natural plant-based
redox mediator acetosyringone (AS) (E0 = +0.5 V versus Ag/AgCl).
AS is generated during the innate plant immune response to patho-
gens, and is then consumed in an oxidative burst20. It normally
exists biologically in a reduced state (AS(R)). As can be seen in
Fig. 2b, we observed the electric oxidation of AS through the
simple evolution to a brownish-orange colour that is characteristic
of the oxidized form21.

We next investigated whether electrically oxidized AS could
oxidize HLPT (Fig. 2a), as well as the nature of that oxidation.
LuxS has a divalent cation (Zn2+, Fe2+) at its active site, which
could be a target for oxidation and attenuation of activity.
Alternatively, sulfhydryl residues are more suitable targets for a gen-
eralized approach. AS(O) was added to HLPT, as well as to LuxS and
Pfs, after which the oxidation status of the protein was measured.
Our results indicate an approximately fourfold reduction in –SH
groups (Fig. 2d; for details see Supplementary Section 7), showing
that AS(O) has oxidized vulnerable sulfhydryl residues on all
three proteins. These results were supported by the use of electron
paramagnetic resonance (EPR) spectroscopy to demonstrate the
protein’s more general oxidation state. To detect general oxidation,
we used the EPR probe CPH (1-hydroxy-3-carboxy-2,2,5,5-tetra-
methylpyrrolidine-HCl), which is oxidized by oxidized HLPT, so
that its radical is revealed and detected. We measured a 2.5-fold
increase in CPH radical from solutions where HLPT was treated
with AS(O) (Fig. 2c). Additionally, using inductively coupled
plasma optical emission spectroscopy (ICP-EOS), we found Zn2+

was unaffected. In summary, our results demonstrate that HLPT
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activity is attenuated by the oxidation of its sulfhydryl residues and
not by oxidation of the active-site cation. Our observations support
the notion that on-chip activity could be controlled by exposure to
AS(O), and that the methodology might be predictable.

To test whether the oxidation of HLPT by AS(O) affects activity,
1.5 µM HLPT was treated with AS(O) as already described, then
incubated with the enzyme pathway precursor S-adenosyl-homo-
cysteine (SAH) (1 mM, 37 °C) (Supplementary Section 8). At the
end of incubation (3–3.5 h), the amount of Hcy produced was
measured and HLPT activity was calculated (Supplementary
Section 5). Our results show that HLPT activity decreased linearly
with exposure time and in proportion to the AS(O)/HLPT ratio
(Fig. 2d, Supplementary Fig. 7), demonstrating that HLPT activity
is attenuated by AS(O) oxidation, an electronically
controlled process.

We next tested our main hypothesis—electrical assembly of
HLPT on a chip and in situ activity attenuation. For these on-chip
experiments, the biohybrid device (set-up assembled as described
in Supplementary Sections 2, 3 and Methods) was immersed in a
solution of AS(R), where it served as the working electrode. In a
one-step process, the electrode was biased at +0.55 V, and the AS
oxidized at the surface could react with the surface-bound HLPT
(Fig. 3b, Supplementary Section 9). An amplified current output
similar to that for solution-based oxidation was observed
(Supplementary Fig. 8). To test our hypothesis that input charge
correlates with decreased on-chip activity, both end-of-reaction
and real-time measurements were performed. Enzyme-laden chips
were biased at +0.55 V for different times (10–1,000 s, resulting in
different levels of accumulated input charge and oxidation of AS),
after which they were incubated with the SAH substrate as before

to allow Hcy and AI-2 generation. Enzyme activity was calculated,
and a linear decrease was found followed by a plateau at long
exposure times (Fig. 3c). Control reactions showed that both the oxi-
dizing voltage (+0.55 V) and the presence of AS were needed for
attenuation (Supplementary Fig. 8). The observed linear decrease
supports the conclusion that as more AS is oxidized at the
surface, it reacts with and oxidizes more HLPT on the electrode,
reducing its activity proportionally. Correspondingly, this was
dependent on the amount of active HLPT present, as can be seen
from the three different series of chips, each with different initial
activities. Also, Hcy increased nearly linearly with time, as indicated
by our real-time measurement. Finally, these measurements correlated
with our end-of-reaction samples (Supplementary Fig. 9).

We then estimated the apparent numbers of electrons needed to
deactivate one HLPT molecule for each on-chip reaction (for calcu-
lations and discussion see Supplementary Section 10). We found
this number (30–90) to be of the same order of magnitude as the
predicted number of target sulfhydryl residues that could be
oxidized on the protein complex (based on crystal structures22,23).

We then asked whether we could predictably tune the activity of
an assembled enzyme complex to a specific ‘setpoint’. For these
experiments (which are outlined and discussed in Supplementary
Section 9) we used electronic signals to both load more than a suffi-
cient amount of enzyme onto the chip and then tune the activity by
calculating the needed charge and biasing the electrode for the esti-
mated duration. In one envisioned application, this method might
enable the design and real-time feedback control of flux through a
surface-assembled biochemical pathway.

Finally, the principal motivation behind our concept was the
ability of the biohybrid device to translate electrical signals to
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Figure 1 | Schematic of the biohybrid device controlled by electronic signals. a, Schematic of the biohybrid device receiving both chemical (enzyme reaction
precursor) and electronic inputs, and, through biochemical intermediates, translating them to both electrochemical signals and biological cell responses.
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modulate complex biological behaviour, including cell phenotype.
We sought to demonstrate that on-chip modulation of HLPT
affected the generation of both Hcy and AI-2, and then that AI-2
would affect the bacterial phenotype. In the present case this was
demonstrated by the generation of a blue fluorescent protein
among engineered Escherichia coli bacteria (Fig. 4a). We prepared
HLPT-immobilized electrode chips as before, and applied varying
amounts of charge to attenuate the enzymatic activity to different
desired setpoints. As before, we allowed the enzymatic reaction to
take place, and electrochemically measured the amount of Hcy
generated. After exposing the cells to the solution containing
AI-2, we used fluorescence-assisted cell sorting (FACS) to detect
the blue fluorescent response (Supplementary Section 4).

Figure 4b presents FACS histogram plots of different fluorescence
intensities resulting from HLPT-immobilized chips modulated
using the indicated amounts of charge. Our results confirmed the
electrically controlled generation of bacterial communication mol-
ecules (in the same proportion as Hcy) and similarly modulated
biological signalling, as indicated by cell fluorescence (Fig. 4c).
This meant that we could predict and feed forward control biologi-
cal behaviour from our electrochemical Hcy measurements.
Moreover, this first ever finding has shown that population-wide
biological behaviour has been modulated electrically.

These combined results (Figs 3, 4 and Supplementary Figs 9, 10)
suggest that AS(O)-driven on-chip electronic attenuation may be a
predictable process for our biohybrid device, and support our
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Figure 2 | Electronically driven HLPT attenuation by natural mediator acetosyringone (AS). a, Schematic of electrochemical oxidation of AS(R) in solution,
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hypothesis that input charge correlates with both enzyme activity
and the generation of two different biochemical products.
Importantly, the assembly methods are biologically benign and
device operation is enabled without the need for multiple liquid
samples. This was envisioned for in vitro metabolic or pathway
engineering4,5. We anticipate that our system and methods can
easily be applied in microfluidic devices with embedded microscale
electrodes. Indeed, our group has already demonstrated functional
enzyme assembly on a chitosan layer, as well as electrochemical
small-molecule measurement inside microfluidic channels4,24.

A generalized application of the present method is described
in the Supplementary Information. We characterized the chip-
actuated assembly and attenuation of two additional enzymes: (1)
the common reporter β-galactosidase and (2) a microbial
transglutaminase used in tissue engineering and other appli-
cations25. We found that AS(O) acted similarly in oxidizing
these proteins and attenuating their activities. We also used in situ

electric oxidation of the alternative diffusible redox mediator IrCl6
3−

to show attenuation of HLPT, β-galactosidase and microbial
transglutaminase, with results similar to those obtained with AS.
These results, provided in Supplementary Section 11, demonstrate
the wider applicability of the method, with the possibility for
further expansion.

This study shows that direct electrical control of a diffusible
redox mediator at the surface of a gold electrode in the vicinity of
an immobilized enzymatic pathway results in predictable protein
oxidation, attenuation of activity and biochemical signal generation.
We envision that the suite of methodologies demonstrated here can
form the basis for targeting and controlling biochemical fluxes of
other biohybrid devices. We therefore propose this methodology
as a powerful addition to the biofabrication toolbox26 that furthers
the utilization of biologically inspired nanoscale processes by brid-
ging the communications and fabrication gaps that exist between
microelectronics and biological systems.
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Methods
Biohybrid device assembly: chitosan film electrodeposition and HLPT
conjugation. A thin layer of chitosan was deposited on a gold-coated silicon chip
(electrode fabricated as described in Supplementary Section 1) (cathode) by
immersing it with a platinum counter-electrode (anode) into a 0.8% chitosan
solution (as described in ref. 27) and applying a current for 2.5 min at 4 A m−2. After
rinsing the chitosan film with distilled water, tyrosinase at 300U µl−1 was mixed with
tyrosine-tagged HLPT (10 µM in PBS) and incubated at room temperature for 1 h
with the chitosan-coated electrodes. Afterwards, each electrode was briefly rinsed
with PBS and kept in the PBS until use. After appropriate treatments (see below),
two similarly treated electrodes, facing away from each other, were diagonally
immersed in a 300 µl solution of 1 mM SAH in 0.1 M pH 7 phosphate buffer in a
standard semi-micro cuvette (Cole Parmer). The cuvette was stoppered and
incubated at 37 °C while being shaken at 100 r.p.m. for the indicated amount of time
to let the enzymatic reaction take place (3–3.5 h). See Supplementary Section 2 for
details and diagram of procedure, set-up and chip.

On-chip biohybrid device electrical attenuation. For in situ attenuation with
acetosyringone, the gold chip with HLPT (assembled as above) was used as the
working electrode in a three-electrode system with a 0.5-mm-diameter, 4-cm-long
platinum counter-electrode (Alfa Aesar) and Ag/AgCl reference electrode (BASi).
These were placed in a 250 µM AS solution and the working electrode biased at
+0.55 V using a CH Instruments workstation (CHI 6273c) for the designated
amount of time (10–1,000 s). The chip was then rinsed gently with PBS, and allowed
to react with SAH as indicated above. See Supplementary Section 2 for a diagram of
the set-up.

Electrochemical homocysteine detection. To measure the homocysteine generated
from an on-chip HLPT, the reaction solution was removed at the end of the
incubation with SAH, allowing Hcy measurement. Cyclic voltammetry was used to

detect homocysteine. A three-electrode set-up was used, with a 2-mm-diameter gold
working electrode (CH Instruments) and counter- and reference electrodes as in the
attenuation method already described. The potential was swept from 0 V to +0.7 V
and back at 50 mV s−1 (∼28 s). The electrodes were cleaned briefly with Piranha
solution (70% H2SO4 and 30% H2O2) before the start of the experiment. Between
every measurement the working electrode was polished for 1 min with 0.05 µm
alumina powder on a felt polishing pad (CH Instruments) and rinsed with distilled
water, except during real-time measurement experiments. Integration of the output
current yielded the output charge in coulombs (Q = ∫i dt). In the experiments, the
total accumulated charge at +0.7 V was recorded and used as a measure
of homocysteine.
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