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Abstract

We report the fabrication of gold/polycarbonate (Au/PC) hybrid nano resonators on plastic substrates through a
nano-transfer printing (nTP) technique, and the parametric studies of the resonant frequency of the resulting
hybrid nano resonators. nTP is a nanofabrication technique that involves an assembly process by which a printable
layer can be transferred from a transfer substrate to a device substrate. In this article, we applied nTP to fabricate
Au/PC hybrid nano resonators on a PC substrate. When an AC voltage is applied, the nano resonator can be
mechanically excited when the AC frequency reaches the resonant frequency of the nano resonator. We then
performed systematic parametric studies to identify the parameters that govern the resonant frequency of the
nano resonators, using finite element method. The quantitative results for a wide range of materials and
geometries offer vital guidance to design hybrid nano resonators with a tunable resonant frequency in a range of
more than three orders of magnitude (e.g., 10 KHz-100 MHz). Such nano resonators could find their potential
applications in nano electromechanical devices. Fabricating hybrid nano resonators via nTP further demonstrates
nTP as a potential fabrication technique to enable a low-cost and scalable roll-to-roll printing process of
nanodevices.

Introduction
Flexible electronics is an emerging technology that will
have a significant social impact through an exciting
array of applications, such as low-cost electronic paper,
printable thin-film solar cells, and wearable power har-
nessing devices, to name a few [1-7]. Future success of
flexible electronics hinges upon new choices for fabrica-
tion processes that are cost-effective, scalable to large
areas, and compatible with both organic and inorganic
materials [8]. Roll-to-roll printing of flexible devices
allows for dramatic reduction in capital and device
costs, resulting in lightweight, thin, rugged, and large
area flexible devices [9]. While this promising technol-
ogy still being in its infancy, there are existing efforts to
explore enabling printing technology for roll-to-roll pro-
cess, such as ink-jet printing [10], micro-contact print-
ing (μCP) [11,12], and nano-transfer printing (nTP)
[13-19]. Unlike inkjet printing and μCP, nTP is

inherently compatible with nano-scale features and the
resulting devices are as good as those fabricated via tra-
ditional processing methods [17]. nTP primarily relies
on differential adhesion for the transfer of a printable
layer from the transfer substrate to a device substrate.
Various organics and inorganics can be printed in the
same manner thus avoiding mixed processing methods
and allowing multilayer registration. So far, nTP has
been successfully used to fabricate a range of functional
components for flexible devices, such as organic thin-
film transistors (OTFTs) [17], carbon nanotube TFTs
[20], graphene TFTs [16,21], and inductors. In this arti-
cle, we report the fabrication of gold/polycarbonate (Au/
PC) hybrid mechanical nano resonators on plastic sub-
strates through an nTP process, and the parametric
study of the resonant frequency of the resulting hybrid
nano resonators.
The nTP process has been described in detail else-

where [15,17] and is briefly described here and illu-
strated in Figure 1. The first step was to prepare a
printable layer on the surface of a transfer substrate.
The second step was to sandwich the printable layer in
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between the transfer and device substrates. The third
step was to apply pressure such that the printable layer
was in contact with both substrates. As long as the
adhesion of the printable layer to the device substrate is
larger than to the transfer substrate, upon separation of
the substrates, the printable layer will remain in contact
with the device substrate and thus have been success-
fully transfer printed. If the transfer substrate is a ther-
moplastic or has a surface containing a thermally
activated adhesion layer, then the application of tem-
perature can be used to increase the needed differential
adhesion. nTP has been applied as a means of fabricat-
ing thin-film transistors on plastic substrates. Previous
study has demonstrated high quality transistor devices
incorporating small molecule organic (penatcene), poly-
meric organic (P3HT), inorganic (Si ribbons), and car-
bon-based (both carbon nanotubes and graphene)
semiconductor materials [15,17,20-25]. These devices
also have incorporated previously printed Au source/
drain and gate electrodes separated by a (printed) poly-
mer dielectric layer.
If the transfer substrate contains a templated surface

in addition to a printable layer as illustrated in Figure
2a, then the nTP process can be used to create three-
dimensional structures on the device substrate, which
contain the printed materials as is illustrated in Figure
2b. The fabrication of such nanostructures as mechani-
cal resonators, microfluidic, and MEMS/NEMS devices
can be accomplished by assembling sequentially printed
materials on the device substrate as illustrated in Figure
2c. As a demonstration of the concept, the mechanical
resonators shown in Figure 3 have been fabricated by

printing Au and PC membranes over previously printed/
templated Au electrodes embedded within cavities on a
PC substrate. The detailed fabrication of these mechani-
cal resonators is presented as follows.
A 200-500-nm-thick Au printable layer was fabricated

on a Si transfer substrate using standard photolithogra-
phy, followed by metals deposition using an e-beam
deposition system and lift-off. The resulting Au pattern
was used as an etch mask such that the Si transfer sub-
strate was etched to a depth of approximately 8 μm in
an RIE chamber using 20 SCCM SF6, 20 mTorr, and
100 W. The Au printable layer covering the raised por-
tion of the templated transfer substrate was printed
onto a PC device substrate in a Nanonex NX2500 nano-
imprintor at 160°C and 500 psi for 3 min. A second
transfer substrate was prepared by performing metals
deposition of a 35-nm Au film through a shadow mask
onto a Si transfer substrate and then spin coating a
200-nm thick PC film over the Au film. The Au/PC
membrane was transfer printing over the previously
printed PC substrate at 130°C and 500 psi for 3 min.
Note that the first printing temperature is above the
glass transition temperature (Tg) of the PC substrate
while the second printing temperature is below Tg. The
higher temperature was used to ensure that the tem-
plated surface was fully replicated into the surface of the
PC substrate while the lower temperature was used to
ensure that the templated surface of the PC substrate
was retained. The resulting mechanical resonator is
shown in Figure 3a. Note that this device exhibits wrin-
kles in the top layer Au/PC membrane. Such features
result from the compressive strain built up within the

Figure 1 Schematics of the nTP process.
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Au membrane due to the differential thermal expansion
between the Au and PC materials. Figure 3b shows a
similar device where the Au membrane was deposited
near room temperature in an e-beam evaporator rather
than transfer printed at 130°C. Note that the device con-
taining the directly deposited Au film has notable fewer
wrinkles than the device containing the printed Au film.
A preliminary measurement of the resonant frequency

on these devices was performed visually under an opti-
cal microscope. The top and bottom electrodes were
contacted using probe tips connected to a square wave
AC voltage source. A voltage of approximately 100 V
was applied across the electrodes as a means to
mechanically excite the devices and the frequency swept
from 400 to 600 KHz for the device in Figure 3a and
from 10 to 35 KHz for the device in Figure 3b. The
optical microscope was initially in focus on the surface
of the Au/PC film. As the frequency of the applied vol-
tage reaches the resonant frequency of the nano resona-
tor, the Au/PC film is exited and starts to vibrate. As a
result, the surface of the Au/PC film in the microscope
becomes out of focus. The frequency as a change in
focus of the Au/PC film surface was recorded as the
resonate frequency. In this way, the resonant frequencies

were estimated to be 520 and 25 KHz, respectively. It is
expected that the resonant frequency of a hybrid nano
resonator depends on both the geometric parameters of
the design (i.e., the width of the cavity over which Au/
PC is fabricated, the thickness of the Au/PC film) and
the mechanical properties of the constituent materials
(i.e., elastic moduli of Au and PC). For example, a simi-
lar nano resonator fabricated over a narrower cavity has
a higher resonant frequency, with all other parameters
remaining the same.
To guide further experiments and explore the design

limit of hybrid nano resonators fabricated via nTP, we
next perform systematic parametric studies to investi-
gate the effects of aforementioned governing parameters
on the resonant frequencies of hybrid nano resonators,
using finite element analysis. Specifically, we study the
effects of the PC thickness, the cavity width, and the
elastic modulus of the polymeric film (e.g., if a polymer
different from PC is used). The results from the para-
metric studies can serve as guidelines to design hybrid
nano resonators with tunable resonant frequencies.
Given that the plastic substrate is significantly thicker

than the Au/PC bilayer (e.g., more than thousands
times) and the bottom Au film is well adhered to the

Figure 2 Illustration of the fabrication of a three-dimensional device via nTP. A templated surface containing a printable layer on the
raised portion of a transfer is shown in (a) before and (b) after printing onto a thermoplastic device substrate. The sequential printing of a
multilayer printable layer is shown in (c).
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bottom of the cavity in the plastic substrate, the reso-
nant vibration of the hybrid nano resonator shown in
Figure 3 can be reasonably assumed to occur mainly in
the freestanding portion of the Au/PC bilayer. Above
said, we simplify the model of the hybrid nano resonator
as a bilayer structure consisting of a thin Au film of
thickness h that is well bonded to a polymeric film of
thickness H, as illustrated in Figure 4. The two ends
of the bilayer are clamped, which is justified given the
large ratio of the cavity width over the bilayer thickness.
Here we assume the Au/PC bilayer is fabricated over an

infinitely long cavity of width d; therefore, the resonant
vibration of the Au/PC bilayer can be assumed to be in
plain strain condition. The effect of such an assumption
will be further discussed later in the article.
The finite element code, ABAQUS 6.9, was used to

compute the natural frequencies of the resonator mod-
els. In the finite element model, the top surface of the
polymeric film was tied with the bottom surface of the
Au film. Therefore, no delamination between the Au
and the polymeric film occurs. Both Au and polymer
are modeled as homogenous and elastic solids. The
material properties of Au and PC used in the model are
listed in Table 1. Four-node bilinear elements with
reduced integration are used for both the Au and the
polymer film. Particular efforts were placed on meshing
to guarantee sufficient mesh density and suitable ele-
ment aspect ratio to achieve satisfactory computation
precision.
In the parametric studies, we fixed the thickness and

the elastic modulus of the Au film to be 35 nm and
78 GPa, respectively. The thickness of the polymeric
film H was varied between 0.2 and 10 μm and the elas-
tic modulus of the polymeric film E was varied between
10 MPa and 10 GPa (e.g., corresponding to a range

Figure 3 Optical images of Au/PC hybrid nano resonators printed onto a PC substrate with the top Au film. (a) printed along with the
top PC film and (b) vacuum deposited after printing of the top PC film.

d

H
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h

Figure 4 Schematics of the computational model of the hybrid
nano resonator. Here, h = 35 nm; H and d are varied in parametric
study.
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from a compliant elastomer film to a stiff plastic film).
The cavity width d is varied between 5 and 50 μm. The
resonant frequency analysis was carried out via eigen-
mode and eigenvalue extraction using Lanzcos method
in ABAQUS 6.9.
Figure 5 plots the resonant frequencies of the base

eigenmode of the hybrid nano resonators in the para-
meter space spanned by the cavity width and the thick-
ness of the polymer film, for various elastic moduli of
the polymer film. For a given elastic modulus of the
polymer film, the resonant frequency increases monoto-
nically as the substrate thickness increases and the cav-
ity width decreases. Such an increase in resonant
frequency becomes rather prominent when a stiff plastic
film is used in the nano resonator (e.g., high elastic
modulus). For example, for E = 10 GPa, the resonant
frequency can be as high as 91 MHz when H = 1 μm
and d = 5 μm. By contrast, for E = 10 MPa, the reso-
nant frequency can be as low as 23.2 KHz when H = 0.2
μm and d = 50 μm. In other words, there is significant

tunability (e.g., more than three orders of magnitude) of
the resonant frequency of the base mode of the hybrid
nano resonators within the parameter space we
explored.
Figure 6 compares the contour plots of the resonant

frequencies of the base and secondary modes of the
hybrid nano resonators as a function of the cavity width
and the thickness of the polymer film, for various elastic
moduli of the polymer film. For a given combination of
d, H, and E, the resonant frequency of the secondary
mode is higher than that of the base mode. For example,
the secondary mode resonant frequency is 199 MHz
when H = 1 μm, d = 5 μm, and E = 10 GPa, compared
with the base mode resonant frequency of 91 MHz. As
shown in Figure 6b, the secondary mode resonant fre-
quency increases monotonically as H increases when the
cavity width is relatively large (e.g., d >10 μm), but
reaches its maximum at a certain value of H then
decreases as H increases when d is small. Similar trends
were also observed in the simulation results of higher
order resonant modes. Such a dependence of higher
order mode resonant frequency on H and d can be
explained as follows. When H and d become compar-
able (e.g., a thick polymer film over a narrow cavity),
the resulting nano resonator does not depict a thin-film
profile. As a result, the higher order eigenmodes of such
a nano resonator assume irregular modal shapes that

Table 1 Material properties used in computational model

Gold PC

Elastic modulus (GPa) 78 2

Poisson’s ratio 0.44 0.37

Density (kg/m3) 19.3 × 103 1.2 × 103

E=10GPa

2 GPa

100MPa
10MPa

Resonant frequency (Hz)

Figure 5 Resonant frequency of the base mode of a hybrid nano resonator as a function of the thickness of the polymer film H and
the cavity width d, for various stiffnesses of the polymer film E. Note the logarithmic scales for both H and d.
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Figure 6 Contour plots of the resonant frequencies of (a). the base and (b) secondary modes of the hybrid nano resonators as a function of
the thickness of the polymer film H and the cavity width d, for various stiffnesses of the polymer film E.
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are different from the regular sinusoidal modal shapes of
a thin-film nano resonator. Other parameters, such as
the boundary conditions at the two ends, come into
play in determining the resonant frequency. Nonethe-
less, the dependence of the base mode resonant fre-
quency on H and d, which is of the most technical
significance in practice, is monotonic within the para-
meter space we explored.
In our parametric studies, our simulation models corre-

spond to a hybrid nano resonator fabricated over an infi-
nitely long cavity. Compared to that fabricated over a
square cavity (e.g., Figure 3), our simulation model
ignores the mechanical constraint imposed by another
two sides of the cavity to the Au/PC bilayer. In this
sense, our simulation results underestimate the resonant
frequencies of nano resonators fabricated in our experi-
ments. For example, the predicted base mode resonant
frequency is 119 KHz for H = 0.2 μm and d = 50 μm,
which falls in between the two measured resonant fre-
quencies (520 and 25 KHz, respectively). Further mea-
surement of the resonant frequencies of the hybrid nano
resonators at higher precision is under exploration and
will be reported elsewhere. In our simulations, the wrin-
kles in the Au films due to thermal mismatch during
nTP process are not considered. Wrinkles in the Au film
lead to increased bending resistance of the nano resona-
tor, therefore result in a resonant frequency higher than
that of a smooth nano resonator. In this sense, the simu-
lation results underestimate the resonant frequency of
the Au/PC nano resonators. Recent study shows that the
interfacial defects also affect the quality of nTP process
[19]. For example, an interfacial delamination along the
interface between transfer substrate and printable layer
(Figure 1) is beneficial, while that along the interface
between printable layer and device substrate is detrimen-
tal for the success of nTP process. Such understandings
can be indeed leveraged to enhance the quality of nTP
processes, such as by introducing pre-delamination along
the desirable interface via controlled adhesion. We will
explore such a strategy in future works to further
improve the yield of the nano resonator fabrication.
In summary, we fabricated Au/PC hybrid mechanical

nano resonators on plastic substrates through an nTP
process, and conducted systematic computational studies
to decipher the geometric parameters and mechanical
properties that govern the resonant frequency of the
resulting hybrid nano resonators. We showed that the
hybrid nano resonators can be mechanically excited when
the frequency of the applied AC voltage reaches the reso-
nant frequency of the hybrid nano resonators. The quan-
titative results for a wide range of materials (from PC to
elastomers) and geometries offer vital guidance to design
hybrid nano resonators with a tunable resonant frequency
in a range of more than three orders of magnitude (e.g.,

10 KHz-100 MHz). Given the versatility of nTP process,
it is reasonable to expect that such designs of nano-scale
resonators can be achieved. While the exploration
reported in this article is still preliminary, there is no
doubt that such hybrid nano resonators could find their
potential applications in nano- electromechanical devices.
Fabricating hybrid nano resonators via nTP further
demonstrates nTP as a potential fabrication technique
to enable a low-cost and scalable roll-to-roll printing
process of nanodevices.
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Au/PC: gold/polycarbonate; μCP: micro-contact printing; nTP: nano-transfer
printing; OTFTs: organic thin-film transistors.
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